A matemática pura é a matemática que não tem ou não necessita se preocupar com sua possível aplicação em uma determinada área do conhecimento, sendo considerada uma matemática "estética". Entretanto o que aparentemente é abstrato e não aplicável em nada, acaba por muitas vezes ser útil às diversas disciplinas que "bebem da fonte" matemática.
Matemática pura e matemática aplicada são ambas acerca de aplicações, mas com um período de tempo muito diferente. Uma porção de matemática aplicada vai empregar ideias maduras da matemática pura a fim de resolver um problema aplicado hoje; uma porção de matemática pura vai criar uma nova ideia ou insight que, caso seja bom, provavelmente conduzirá a uma aplicação talvez dali a dez ou vinte anos.
Como exemplo, Godfrey Harold Hardy viveu em uma época em que a maioria das aplicações da matemática eram militares, e por esta razão ele defendeu o estudo da teoria dos números (que na época de Hardy não tinha aplicações e era estudada meramente pelo seu apelo intrínseco) e a descreveu como "dócil e pura". Décadas depois, a teoria dos números encontrou aplicações em criptografia (militar e industrial, e mais tarde também tornou seguras compras online e operações bancárias).
Os principais temas estudados nesta área são a álgebra, geometria e análise.
A disciplina matemática que estuda as relações entre números por intermédio de expressões simbólicas gerais é denominada álgebra. A álgebra surgiu a partir da aritmética, estágio inicial da evolução da matemática, provavelmente na Babilônia, quando foram criadas as equações e os métodos para reduzi-las. No século XVI, várias iniciativas se tomaram no sentido de simplificar a representação de fórmulas algébricas, mas atribui-se a François Viète a primeira sistematização de uma linguagem de sinais algébricos.
Em 1507, no livro Cosmographiae Introductio, Martin Waldseemüller empregou vogais para denotar incógnitas, e consoantes para as grandezas constantes. As potências de um número "A" eram assim escritas: Aq(quadrado), Ac(cubo), Aqq(duplo quadrado).
Foi Descartes quem primeiro utilizou as letras x, y e z para as incógnitas e a, b e c para as constantes e quem empregou expoentes em potências. A solução de sistemas de equações lineares por meio de matrizes e determinantes parece ter sido ideia de Leibniz, mas o primeiro tratamento sistemático da teoria dos determinantes deve-se a Alexandre-Theóphile Vandermonde, em 1771, e Pierre-Simon Laplace, em 1772.
Nos séculos seguintes os matemáticos dedicaram-se a encontrar métodos gerais para solucionar equações algébricas de diferentes graus.
Um conceito central na matemática pura é a ideia de generalidade; a matemática pura geralmente apresenta uma tendência aumentada para a generalidade.
Generalidades podem facilitar as conexões entre os diferentes ramos da matemática. Neste sentido a teoria das categorias é a área da matemática dedicada a explorar esta comunhão de estrutura entre as diversas áreas da matemática.
O impacto da metodologia da generalidade sobre a intuição é dependente tanto da materialidade do assunto quanto de uma questão de preferência pessoal ou estilo de aprendizagem. Frequentemente ela é vista como um obstáculo à intuição, embora certamente possa funcionar como um auxílio ao mesmo, em particular quando se fornecem analogias à intuição.
Os matemáticos sempre tiveram opiniões divergentes sobre a distinção entre matemática pura e aplicada. Um dos mais famosos exemplos modernos deste debate pode ser encontrado na obra de Godfrey Harold Hardy, A Mathematician's Apology.
Hardy considera a matemática aplicada "feia e sem graça". Embora Hardy tem uma nítida preferencia pela matemática pura, que ele muitas vezes compara com uma "pintura e poesia", Hardy argumenta que a distinção entre matemática pura e aplicada é que esta existe simplesmente para explicar verdades físicas em uma estrutura matemática, enquanto que a matemática pura expressa verdades que são independentes do mundo físico. Hardy fez uma distinção separada das matemáticas, entre o que ele chamou de "matemáticas reais", "que tem valor estético permanente", e "as partes maçantes e elementares de matemática" que têm uso prático.