Utente:Grasso Luigi/sandbox4/Reticolo dei sottogruppi
Nel mondo contemporaneo, Utente:Grasso Luigi/sandbox4/Reticolo dei sottogruppi ha acquisito una rilevanza senza precedenti. Che sia per il suo impatto sulla società, per il suo ruolo nella cultura popolare o per la sua rilevanza nel mondo accademico, Utente:Grasso Luigi/sandbox4/Reticolo dei sottogruppi è diventato un argomento di conversazione ricorrente. Non sorprende, infatti, che Utente:Grasso Luigi/sandbox4/Reticolo dei sottogruppi sia oggetto di dibattito e analisi in numerosi ambiti, poiché la sua influenza si estende a molteplici aspetti della vita moderna. In questo articolo esploreremo in modo approfondito il fenomeno Utente:Grasso Luigi/sandbox4/Reticolo dei sottogruppi, affrontandone le varie sfaccettature e analizzandone l’importanza nel contesto attuale.
The dihedral groupDih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z2 × Z2, generated by pairs of order-two elements. The lattice formed by these ten subgroups is shown in the illustration.
This example also shows that the lattice of all subgroups of a group is not a modular lattice in general. Indeed, this particular lattice contains the forbidden "pentagon" N5 as a sublattice.
Proprietà
For any A, B, and C subgroups of a group with A ≤ C (A subgroup of C) then AB ∩ C = A(B ∩ C); the multiplication here is the product of subgroups. This property has been called the modular property of groupsTemplate:Harv or (Dedekind's) modular law (Robinson, Cohn). Since for two normal subgroups the product is actually the smallest subgroup containing the two, the normal subgroups form a modular lattice.
The Zassenhaus lemma gives an isomorphism between certain combinations of quotients and products in the lattice of subgroups.
In general, there is no restriction on the shape of the lattice of subgroups, in the sense that every lattice is isomorphic to a sublattice of the subgroup lattice of some group. Furthermore, every finite lattice is isomorphic to a sublattice of the subgroup lattice of some finite groupTemplate:Harv.
Reticoli caratteristici
Subgroups with certain properties form lattices, but other properties do not.
Normal subgroups always form a modular lattice. In fact, the essential property that guarantees that the lattice is modular is that subgroups commute with each other, i.e. that they are quasinormal subgroups.
In general, for any Fitting class F, both the subnormalF-subgroups and the normal F-subgroups form lattices. This includes the above with F the class of nilpotent groups, as well as other examples such as F the class of solvable groups. A class of groups is called a Fitting class if it is closed under isomorphism, subnormal subgroups, and products of subnormal subgroups.
However, neither finite subgroups nor torsion subgroups form a lattice: for instance, the free product is generated by two torsion elements, but is infinite and contains elements of infinite order.
The fact that normal subgroups form a modular lattice is a particular case of a more general result, namely that in any Maltsev variety (of which groups are an example), the lattice of congruences is modular Template:Harv.
Proprietà dei gruppi dedotte dai reticoli dei sottogruppi
Lattice theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Template:Harvs. For instance, as Ore proved, a group is locally cyclic if and only if its lattice of subgroups is distributive. If additionally the lattice satisfies the ascending chain condition, then the group is cyclic.