Tellurite tellurate

In this article, we will explore in depth the topic of Tellurite tellurate and its impact on contemporary society. Tellurite tellurate has generated a debate between experts and citizens, generating conflicting opinions and questions about its relevance today. Throughout history, Tellurite tellurate has played a fundamental role in different areas, from politics to popular culture, and its influence continues to be palpable on a daily basis. In this sense, it is crucial to analyze in detail the implications of Tellurite tellurate and how its evolution has shaped our way of understanding the world around us. From its origins to its current situation, this article seeks to provide a comprehensive perspective on Tellurite tellurate and its importance in contemporary society.

A tellurite tellurate is a chemical compound or salt that contains tellurite and tellurate anions 2- 2-. These are mixed anion compounds, meaning the compounds are cations that contain one or more anions. Some have third anions. Environmentally, tellurite 2- is the more abundant anion due to tellurate's 2- low solubility limiting its concentration in biospheric waters. Another way to refer to the anions is tellurium's oxyanions, which happen to be relatively stable.[1]

Naming

A tellurite tellurate compound may also be called a tellurate tellurite. Compounds that contain the anions follow basic nomenclature rules, the cation is named first, followed by the anion.[2] As individual ions current IUPAC naming conventions dictate that compounds containing what was conventionally known as the tellurite ion, 2-, be named as tellurate (IV) compounds, while other tellurates are labeled tellurate (VI) compounds. Furthering confusion, a number of other tellurate oxyanions exist, including pentoxotellurate, 4-, and ditellurate, 8-. Additionally, a number of compounds that do not even include tellurium oxyanions still have "tellurate" in their names, as in the case of octafluoridotellurate, 2-.[3]

Production

One way to produce a tellurite tellurate compound is by heating oxides together.[4] Tellurite tellurate compounds can also occur naturally as minerals such as Carlfriesite Ca.[5]

Properties

Tellurite tellurate compounds can crystalize under certain conditions. Monoclinic and orthorhombic dominate crystal structures of the tellurite tellurates.[5] Most compounds are transparent from near ultraviolet to near infrared. Te-O bonds cause absorption lines in infrared. Sodium tellurite exhibit

Related to these are the selenate selenites and sulfate sulfites by varying the chalcogen.

List

name formula ratio

TeO3:TeO4

mw system space group unit cell Å volume density optical references
NH4Te2O5(OH) 1:1 370.24 orthorhombic Pnma a=7.340 b=5.546 c=13.164 Z=4 535.9 4.50 [6]
K2Te4O12 1:3 780.59 monoclinic C2/m a=12.360 b=7.248 c=11.967 β =105.68 Z=4 1032.2 5.03 [4][1]
K4O23 3:5 1545.18 orthorhombic Pna21 a = 19.793, b = 14.664, c = 7.292, Z = 4 [7]
Carlfriesite Ca 2:1 550.87 monoclinic C2/c a=12.576 b=5.662 c=9.884 β=115.56 6.3 [5]
K4V6O24 2:1 1228.83 trigonal R3c a = 9.7075, c = 42.701, Z = 6 3484.9 [8]
Co2+6(Te6+O6)(Te4+O3)2Cl2 2:1 999.30 tetragonal P42/mbc a = 8.59 c = 5.91 [5]
Rb4O23 3:5 1730.66 orthorhombic Pna21 a = 19.573, b = 14.448, c = 7.273, Z = 4 [7]
Rb4V6O24 2:1 1414.31 trigonal R3c a = 9.8399, c = 43.012, Z = 6 3606.6 [8]
Sr 2:1 598.42 tetragonal P42/m a=6.8321 c=6.7605 [5]
SrCuTe2O7 1:1 518.36 orthorhombic Pbcm a = 7.1464, b = 15.061, c = 5.4380, Z = 4 585.3 [9]
NaYTe2O7 1:1 479.10 monoclinic P21/n a=6.7527 b=7.5077 c=11.8867 β =99.935 Z=4 593.59 5.361 [10]
RbTe1·25Mo0·75O6 a=10.469 [11]
(Ag,Na)2Te4O15 x=0.4 2:2 monoclinic P21/c a = 6.333, b = 24.681, c = 7.308, β = 110.84° Z = 4 [4]
Ag2 1:1 566.93 monoclinic P21/m a=5.4562 b=7.4009 c=6.9122 β=101.237 [5]
Ag2 2:2 902.13 triclinic P1 a=7.287 b=7.388 c=9.686 α=95.67 β=94.10 γ=119.40 [5]
Cd2Te4+Te6+O7 1:1 592.02 monoclinic P21/c a=9.3039 b=7.3196 c=13.2479 β=122.914 [5]
Cs2Te4+Te36+O12 1:3 968.20 rhombohedral R3m a=7.2921 c=18.332 [12]
CsTe2O6–x 1:1 484.10 cubic [12]
CsTe2O6–x 1:1 484.10 orthorhombic [12]
BaTe2O6 1:1 488.52 orthorhombic Cmcm a=5.569 b=12,796 c=7.320 Z=4 6.19 [5][2]
BaMgTe2O7 1:1 528.83 orthorhombic Ama2 a = 5.558, b = 15.215, c = 7.307 Z = 4 617.9 SHG 5 × KDP [13]
CsTe1·13Mo0·864O6 a=10.643 [11]
BaCoTeO3TeO4 1:1 563.46 orthorhombic Ama2 [14]
BaCuTeO3TeO4 1:1 568.07 orthorhombic Ama2 a = 5.4869, b =15.412, c = 7.2066, Z = 4. 609.42 [3]
BaZnTe2O7 569.91 orthorhombic Ama2 a = 5.5498, b = 15.316, c = 7.3098, Z = 4 621.34 SHG 5 × KDP [13]
CeV3Te3O15(OH)3·2H2O 995.74 hexagonal P63/mmc a=12.166 c=12.537 Z=4 1606.9 4.116 dark red [15]
PrV3Te3O15(OH)3·2H2O 996.53 hexagonal P63/mmc a=12.1147 c=12.4949 Z=4 1588.1 4.168 dark red [15]
NdV3Te3O15(OH)3·H2O 983.86 hexagonal P63/mmc a=12.1075 c=12.4572 Z=4 1581.5 4.132 dark red [15]
SmV3Te3O15(OH)3·H2O 989.97 hexagonal P63/mmc a=12.1068 c=12.4509 Z=4 1580.5 4.160 dark red [15]
EuV3Te3O15(OH)3·H2O 991.58 hexagonal P63/mmc a=12.0731 c=12.3674 Z=4 1561.2 4.219 dark red [15]
GdV3Te3O15(OH)3·H2O 996.87 hexagonal P63/mmc a=12.0745 c=12.3701 Z=4 1561.9 4.239 dark red [15]
RbTe1·5W0·5O6 a=10.462 [11]
CsTe1·625W0·375O6 a=10.543 [11]
α-Hg2Te2O7 1:1 768.38 monoclinic C2/c a=12.910 b=7.407 c=13.256 β =112.044 Z=8 [16]
β-Hg2Te2O7 1:1 768.38 orthorhombic Aea2 a=7.441, b=23.713 ,c=13.522, Z=16 [16]
PbCuTe2O7 1:1 637.94 orthorhombic Pbcm a = 7.2033, b = 15.047, c = 5.4691, Z = 4 592.78 [9]
Bi 801.16 [5]
(Ca,Pb)3CaCu62(Te4+O3)2(SO4)2 3111.30 trigonal P3 2 1 a=9.1219(17), c=11.9320(9) 4.65 Viridian green [17]

References

  1. ^ a b Daniel, F.; Moret, J.; Maurin, M.; Philippot, E. (1978-06-01). "Structure cristalline d'un oxotellurate mixte, Te IV et Te VI : K 2 Te IV Te VI 3 O 12 . Pentacoordination du tellure(IV) par les atomes d'oxygène". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 34 (6): 1782–1786. Bibcode:1978AcCrB..34.1782D. doi:10.1107/S0567740878006706. ISSN 0567-7408.
  2. ^ a b Koçak, M.; Platte, C.; Trömel, M. (1979-06-01). "Bariumhexaoxoditellurat(IV,VI): Sauerstoffkoordinationszahl fünf am vierwertigen Tellur". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 35 (6): 1439–1441. Bibcode:1979AcCrB..35.1439K. doi:10.1107/S0567740879006646. ISSN 0567-7408. S2CID 94468970.
  3. ^ a b Sedello, O.; Müller-Buschbaum, Hk. (1996-04-01). "Synthese und Kristallstruktur des Barium -Kupfer-Tellurit-Tellurats BaCuTeO 3 TeO 4 / Synthesis and Crystal Structure of the Barium Copper Tellurite-Tellurate BaCuTeO 3 TeO 4". Zeitschrift für Naturforschung B. 51 (4): 465–468. doi:10.1515/znb-1996-0403. ISSN 1865-7117. S2CID 94953365.
  4. ^ a b c Loeksmanto, Waloejo; Moret, Jacques; Maurin, Maurice; Philippot, Etienne (July 1980). "Etude cristallochimique comparée et conductivité électrique de deux tellurates mixtes: AgxNa2−xTe2IVTe3VIO14 (x = 0,4) et K2TeIVTe3VIO12". Journal of Solid State Chemistry (in French). 33 (2): 209–217. doi:10.1016/0022-4596(80)90122-X.
  5. ^ a b c d e f g h i j Christy, A. G.; Mills, S. J.; Kampf, A. R. (May 2016). "A review of the structural architecture of tellurium oxycompounds". Mineralogical Magazine. 80 (3): 415–545. Bibcode:2016MinM...80..415.. doi:10.1180/minmag.2016.080.093. ISSN 0026-461X. S2CID 99691253.
  6. ^ Philippot, E.; Benmiloud, L.; Maurin, M.; Moret, J. (1979-09-01). "Pentacoordination de l'atome de tellure(IV) par les atomes d'oxygène. Etude cristallochimique d'un oxotellurate mixte: NH 4 [Te IV Te VI O 5 (OH)]". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 35 (9): 1986–1989. Bibcode:1979AcCrB..35.1986P. doi:10.1107/S0567740879008311. ISSN 0567-7408.
  7. ^ a b Minimol, M. P.; Vidyasagar, K. (December 2005). "Syntheses and Structural Characterization of New Mixed-Valent Tellurium Oxides, A 4 [Te 5 6+ Te 3 4+ ]O 23 (A = Rb and K)". Inorganic Chemistry. 44 (25): 9369–9373. doi:10.1021/ic0515599. ISSN 0020-1669. PMID 16323922.
  8. ^ a b Zhu, Tianxiang; Qin, Jingui; Halasyamani, P. Shiv (2011). "Synthesis and structure of A4V6[Te24+Te6+]O24 (A = K, Rb)—two new quaternary mixed-valent tellurium oxides". Dalton Transactions. 40 (34): 8527–8532. doi:10.1039/c1dt10538h. ISSN 1477-9226. PMID 21695319.
  9. ^ a b Yeon, Jeongho; Kim, Sang-Hwan; Hayward, Michael A.; Halasyamani, P. Shiv (2011-09-05). ""A" Cation Polarity Control in ACuTe 2 O 7 (A = Sr 2+ , Ba 2+ , or Pb 2+ )". Inorganic Chemistry. 50 (17): 8663–8670. doi:10.1021/ic2012217. ISSN 0020-1669. PMID 21800873.
  10. ^ Xia, Houping; Shen, Jinni; Zhu, Zhian; Lv, Yangyang; Ma, Qian; Wang, Haiqing (March 2020). "NaYTe2O7: A new compound with mixed valence of tellurium and large birefringence". Journal of Alloys and Compounds. 816: 152535. doi:10.1016/j.jallcom.2019.152535. S2CID 210513971.
  11. ^ a b c d Fukina, Diana G.; Suleimanov, Eugeny V.; Boryakov, Aleksey V.; Zubkov, Sergey Yu; Koryagin, Andrey V.; Volkova, Natalia S.; Gorshkov, Alexey P. (January 2021). "Structure analysis and electronic properties of ATe4+0.5Te6+1.5-xM6+xO6 (A=Rb, Cs, M6+=Mo, W) solid solutions with β-pyrochlore structure". Journal of Solid State Chemistry. 293: 121787. Bibcode:2021JSSCh.29321787F. doi:10.1016/j.jssc.2020.121787. S2CID 225108000.
  12. ^ a b c Siritanon, Theeranun; Li, Jun; Stalick, Judith K.; Macaluso, Robin T.; Sleight, Arthur W.; Subramanian, M. A. (2011-09-05). "CsTe 2 O 6– x : Novel Mixed-Valence Tellurium Oxides with Framework-Deficient Pyrochlore-Related Structure". Inorganic Chemistry. 50 (17): 8494–8501. doi:10.1021/ic2010375. ISSN 0020-1669. PMID 21793494.
  13. ^ a b Yeon, Jeongho; Kim, Sang-Hwan; Nguyen, Sau Doan; Lee, Hana; Halasyamani, P. Shiv (2012-02-20). "Two New Noncentrosymmetric (NCS) Polar Oxides: Syntheses, Characterization, and Structure–Property Relationships in BaMTe 2 O 7 (M = Mg 2+ or Zn 2+ )". Inorganic Chemistry. 51 (4): 2662–2668. doi:10.1021/ic202602q. ISSN 0020-1669. PMID 22296559.
  14. ^ Li, Lisi; Hu, Xunwu; Liu, Zengjia; Yu, Jia; Cheng, Benyuan; Deng, Sihao; He, Lunhua; Cao, Kun; Yao, Dao-Xin; Wang, Meng (August 2021). "Structure and magnetic properties of the $S=3/2$ zigzag spin chain antiferromagnet BaCoTe$_2$O$_7$". Science China Physics, Mechanics & Astronomy. 64 (8): 287412. arXiv:2105.09556. doi:10.1007/s11433-021-1726-0. ISSN 1674-7348. S2CID 234790277.
  15. ^ a b c d e f Lin, Jian; Diefenbach, Kariem; Fu, Jingcheng; Cross, Justin N.; Clark, Ronald J.; Albrecht-Schmitt, Thomas E. (2014-09-02). "LnV 3 Te 3 O 15 (OH) 3 · n H 2 O (Ln = Ce, Pr, Nd, Sm, Eu, Gd; n = 1–2): A New Series of Semiconductors with Mixed-Valent Tellurium (IV,VI) Oxoanions". Inorganic Chemistry. 53 (17): 9058–9064. doi:10.1021/ic501068e. ISSN 0020-1669. PMID 25144682.
  16. ^ a b Weil, Matthias (2003-10-01). "Dimorphism in mercury(II) tellurite(IV) tellurate(VI): preparation and crystal structures of α - and β -Hg 2 Te 2 O 7". Zeitschrift für Kristallographie - Crystalline Materials. 218 (10): 691–698. Bibcode:2003ZK....218..691W. doi:10.1524/zkri.218.10.691.20762. ISSN 2196-7105. S2CID 98559761.
  17. ^ "Tlapallite: Mineral information, data and localities".