In this article we will explore Q-gamma function in depth, analyzing its importance, its impacts and its influence on different aspects of daily life. Q-gamma function is a phenomenon that has attracted the attention of experts and scholars in different areas, since its relevance ranges from the personal to the global level. Throughout this article, we will examine the various aspects that make Q-gamma function a topic of interest and reflection, as well as the different perspectives from which it can be approached. In addition, we will delve into the implications that Q-gamma function has in different contexts and its potential to generate significant changes in society.
For non-negative integers ,
where is the -factorial function. Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers.
The relation to the ordinary gamma function is made explicit in the limit
There is a simple proof of this limit by Gosper. See the appendix of (Andrews (1986)).
Transformation properties
The -gamma function satisfies the q-analog of the Gauss multiplication formula (Gasper & Rahman (2004)):
Integral representation
The -gamma function has the following integral representation (Ismail (1981)):
Stirling formula
Moak obtained the following q-analogue of the Stirling formula (see Moak (1984)):
where , denotes the Heaviside step function, stands for the Bernoulli number, is the dilogarithm, and is a polynomial of degree satisfying
Raabe-type formulas
Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the -gamma function when . With this restriction,
El Bachraoui considered the case and proved that
Special values
The following special values are known.[1]
These are the analogues of the classical formula .
Moreover, the following analogues of the familiar identity hold true:
Zhang, Ruiming (2010), "On asymptotics of Γq(z) as q approaching 1", arXiv:1011.0720
Ismail, Mourad E. H.; Muldoon, Martin E. (1994), "Inequalities and monotonicity properties for gamma and q-gamma functions", in Zahar, R. V. M. (ed.), Approximation and computation a festschrift in honor of Walter Gautschi: Proceedings of the Purdue conference, December 2-5, 1993, vol. 119, Boston: Birkhäuser Verlag, pp. 309–323, arXiv:1301.1749, doi:10.1007/978-1-4684-7415-2_19, ISBN978-1-4684-7415-2, S2CID118563435
References
^Mező, István (2011), "Several special values of Jacobi theta functions", arXiv:1106.1042
Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 76 (508), The Royal Society: 127–144, Bibcode:1905RSPSA..76..127J, doi:10.1098/rspa.1905.0011, ISSN0950-1207, JSTOR92601
Ismail, Mourad (1981), "The Basic Bessel Functions and Polynomials", SIAM Journal on Mathematical Analysis, 12 (3): 454–468, doi:10.1137/0512038
Moak, Daniel S. (1984), "The Q-analogue of Stirling's formula", Rocky Mountain J. Math., 14 (2): 403–414, doi:10.1216/RMJ-1984-14-2-403
Mező, István (2012), "A q-Raabe formula and an integral of the fourth Jacobi theta function", Journal of Number Theory, 133 (2): 692–704, doi:10.1016/j.jnt.2012.08.025, hdl:2437/166217
El Bachraoui, Mohamed (2017), "Short proofs for q-Raabe formula and integrals for Jacobi theta functions", Journal of Number Theory, 173 (2): 614–620, doi:10.1016/j.jnt.2016.09.028
Askey, Richard (1978), "The q-gamma and q-beta functions.", Applicable Analysis, 8 (2): 125–141, doi:10.1080/00036817808839221
Andrews, George E. (1986), q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra., Regional Conference Series in Mathematics, vol. 66, American Mathematical Society