Holographic sensor

In this article we will explore Holographic sensor, a topic that has captured the attention of academics, experts and hobbyists alike in recent years. Holographic sensor has proven to be a complex and multifaceted topic encompassing a wide range of perspectives and approaches. From its impact on society to its relevance in the scientific field, Holographic sensor has been the subject of debate and discussion in various circles and disciplines. Throughout these pages, we will delve into the different aspects of Holographic sensor, exploring its origins, evolution and possible implications for the future. We hope to provide our readers with a comprehensive and enriching insight into this fascinating topic.

A holographic sensor is a device that comprises a hologram embedded in a smart material that detects certain molecules or metabolites.[1] This detection is usually a chemical interaction that is transduced as a change in one of the properties of the holographic reflection (as in the Bragg reflector), either refractive index or spacing between the holographic fringes.[2] The specificity of the sensor can be controlled by adding molecules in the polymer film that selectively interacts with the molecules of interest.

A holographic sensor aims to integrate the sensor component, the transducer and the display in one device for fast reading of molecular concentrations based in colorful reflections or wavelengths.[3]

Certain molecules that mimic biomolecule active sites or binding sites can be incorporated into the polymer that forms the holographic film in order to make the holographic sensors selective and/or sensitive to certain medical important molecules like glucose, etc.

The holographic sensors can be read from a fair distance[quantify] because the transducer element is light that has been refracted and reflected by the holographic grating embedded in the sensor. Therefore, they can be used in industrial applications where non-contact with the sensor is required. Other applications for holographic sensors are anti-counterfeiting [4]

Metabolites

Some of the metabolites detected by a holographic sensor are:

References

  1. ^ AK Yetisen; I Naydenova; F da Cruz Vasconcellos; J Blyth; CR Lowe (2014). "Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and their Applications". Chemical Reviews. 114 (20): 10654–96. doi:10.1021/cr500116a. PMID 25211200.
  2. ^ AK Yetisen; Y Montelongo; FC Vasconcellos; JL Martinez-Hurtado; S Neupane; H Butt; MM Qasim; J Blyth; K Burling; JB Carmody; M Evans; TD Wilkinson; LT Kubota; MJ Monteiro; CR Lowe (2014). "Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor". Nano Letters. 14 (6): 3587–3593. Bibcode:2014NanoL..14.3587Y. doi:10.1021/nl5012504. PMID 24844116.
  3. ^ AK Yetisen; H Butt; F da Cruz Vasconcellos; Y Montelongo; CAB Davidson; J Blyth; JB Carmody; S Vignolini; U Steiner; JJ Baumberg; TD Wilkinson; CR Lowe (2014). "Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors". Advanced Optical Materials. 2 (3): 250–254. doi:10.1002/adom.201300375. S2CID 96257175.
  4. ^ FC Vasconcellos; AK Yetisen; Y Montelongo; H Butt; A Grigore; CAB Davidson; J Blyth; MJ Monteiro; TD Wilkinson; CR Lowe (2014). "Printable Surface Holograms via Laser Ablation" (PDF). ACS Photonics. 1 (6): 489–495. doi:10.1021/ph400149m.
  5. ^ Hurtado, J. L. Martinez; Lowe, C. R. (2014). "Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation". ACS Applied Materials & Interfaces. 6 (11): 8903–8908. doi:10.1021/am5016588. ISSN 1944-8244. PMID 24803236.
  6. ^ CP Tsangarides; AK Yetisen; FC Vasconcellos; Y Montelongo; MM Qasim; CR Lowe; TD Wilkinson; H Butt (2014). "Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors" (PDF). RSC Advances. 4 (21): 10454–10461. Bibcode:2014RSCAd...410454T. doi:10.1039/C3RA47984F. S2CID 15441587.
  7. ^ a b Martínez-Hurtado, J. L.; Davidson, C. A. B.; Blyth, J.; Lowe, C. R. (2010). "Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds". Langmuir. 26 (19): 15694–15699. doi:10.1021/la102693m. ISSN 0743-7463. PMID 20836549.
  8. ^ Selective Holographic Glucose Sensor: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1426342&userType=inst
  9. ^ Blyth, Jeff; Millington, Roger B.; Mayes, Andrew G.; Frears, Emma R.; Lowe, Christopher R. (1996). "Holographic Sensor for Water in Solvents". Analytical Chemistry. 68 (7): 1089–1094. doi:10.1021/ac9509115. ISSN 0003-2700. PMID 21619138.
  10. ^ Sartain, Felicity K.; Yang, Xiaoping; Lowe, Christopher R. (2006). "Holographic Lactate Sensor". Analytical Chemistry. 78 (16): 5664–5670. doi:10.1021/ac060416g. ISSN 0003-2700. PMID 16906709.
  11. ^ Marshall, Alexander J.; Young, Duncan S.; Blyth, Jeff; Kabilan, Satyamoorthy; Lowe, Christopher R. (2004). "Metabolite-Sensitive Holographic Biosensors". Analytical Chemistry. 76 (5): 1518–1523. doi:10.1021/ac030357w. ISSN 0003-2700. PMID 14987112.
  12. ^ Millington, Roger B.; Mayes, Andrew G.; Blyth, Jeff.; Lowe, Christopher R. (1995). "A Holographic Sensor for Proteases". Analytical Chemistry. 67 (23): 4229–4233. doi:10.1021/ac00119a004. ISSN 0003-2700.
  13. ^ AK Yetisen; M Qasim; S Nosheen; TD Wilkinson; CR Lowe (2014). "Pulsed laser writing of holographic nanosensors". Journal of Materials Chemistry C. 2 (18): 3569. doi:10.1039/C3TC32507E.