In today's world, Emerin has become a topic of great relevance and debate. Its impact extends to various areas, generating conflicting opinions and awakening the interest of experts and the general public. That is why it is essential to delve into its implications, origin and consequences, in order to thoroughly understand its influence in different areas. In this article, different perspectives on Emerin will be explored, analyzing its evolution over time and its relevance today. From its origins to its impact on modern society, key aspects will be addressed that will allow the reader to have a broad and detailed vision of this fascinating topic.
Mutations in emerin cause X-linked recessiveEmery–Dreifuss muscular dystrophy, which is characterized by early contractures in the Achilles tendons, elbows and post-cervical muscles; muscle weakness proximal in the upper limbs and distal in lower limbs; along with cardiac conduction defects that range from sinus bradycardia, PR prolongation to complete heart block.[16] In these patients, immunostaining of emerin is lost in various tissues, including muscle, skin fibroblasts, and leukocytes, however diagnostic protocols involve mutational analysis rather than protein staining.[16] In nearly all cases, mutations result in a complete deletion, or undetectable levels, of emerin protein. Approximately 20% of cases have X chromosomes with an inversion within the Xq28 region.[17]
Moreover, recent research have found that the absence of functional emerin may decrease the infectivity of HIV-1. Thus, it is speculated that patients with Emery–Dreifuss muscular dystrophy may have immunity to or show an irregular infection pattern to HIV-1.[18]
^ abBione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (Dec 1994). "Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy". Nature Genetics. 8 (4): 323–7. doi:10.1038/ng1294-323. PMID7894480. S2CID7719215.
^Nagano A, Koga R, Ogawa M, Kurano Y, Kawada J, Okada R, Hayashi YK, Tsukahara T, Arahata K (Mar 1996). "Emerin deficiency at the nuclear membrane in patients with Emery–Dreifuss muscular dystrophy". Nature Genetics. 12 (3): 254–9. doi:10.1038/ng0396-254. PMID8589715. S2CID11030787.
^Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL, Hiraoka Y (Mar 2004). "Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery–Dreifuss muscular dystrophy". European Journal of Biochemistry. 271 (5): 1035–45. doi:10.1111/j.1432-1033.2004.04007.x. PMID15009215.
^Sakaki M, Koike H, Takahashi N, Sasagawa N, Tomioka S, Arahata K, Ishiura S (Feb 2001). "Interaction between emerin and nuclear lamins". Journal of Biochemistry. 129 (2): 321–7. doi:10.1093/oxfordjournals.jbchem.a002860. PMID11173535.
^Clements L, Manilal S, Love DR, Morris GE (Jan 2000). "Direct interaction between emerin and lamin A". Biochemical and Biophysical Research Communications. 267 (3): 709–14. doi:10.1006/bbrc.1999.2023. PMID10673356.
^ abWheeler MA, Davies JD, Zhang Q, Emerson LJ, Hunt J, Shanahan CM, Ellis JA (Aug 2007). "Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy". Experimental Cell Research. 313 (13): 2845–57. doi:10.1016/j.yexcr.2007.03.025. PMID17462627.
Bione S, Small K, Aksmanovic VM, D'Urso M, Ciccodicola A, Merlini L, Morandi L, Kress W, Yates JR, Warren ST (1996). "Identification of new mutations in the Emery–Dreifuss muscular dystrophy gene and evidence for genetic heterogeneity of the disease". Hum. Mol. Genet. 4 (10): 1859–63. doi:10.1093/hmg/4.10.1859. PMID8595407.
Yamada T, Kobayashi T (1996). "A novel emerin mutation in a Japanese patient with Emery–Dreifuss muscular dystrophy". Hum. Genet. 97 (5): 693–4. doi:10.1007/BF02281886. PMID8655156. S2CID32857705.