aus verschiedenen Perspektiven untersuchen und seine Auswirkungen auf die heutige Gesellschaft und seine Relevanz in verschiedenen Bereichen analysieren.
war im Laufe der Geschichte Gegenstand von Studien und Interesse, was uns dazu veranlasst, über seinen Einfluss auf die moderne Welt nachzudenken. Durch eine tiefgreifende und detaillierte Analyse werden wir versuchen, Licht auf die verschiedenen Aspekte zu werfen, die es umgeben, von seiner Geschichte bis zu seiner möglichen Entwicklung in der Zukunft. Ziel ist es, einen vollständigen und bereichernden Überblick zu bieten, der es uns ermöglicht, die Rolle, die
Die beschränkte schwach-*-Topologie, kurz bw*-Topologie (nach der englischen Bezeichnung "bounded weak* topology"), ist eine im mathematischen Teilgebiet der Funktionalanalysis untersuchte Topologie auf dem Dualraum eines normierten Raums. Sie ist eng mit der schwach-*-Topologie verbunden.
Definition
Sei ein normierter Raum und sein Dualraum.
Die bw*-Topologie ist die feinste Topologie auf , deren Relativtopologie auf allen beschränkten Mengen mit der schwach-*-Topologie übereinstimmt.
Definiert man zu jeder beschränkten Menge die Inklusion , so ist die bw*-Topologie die Finaltopologie der Abbildungen . Eine Menge ist genau dann bw*-offen, wenn der Durchschnitt für alle beschränkten Mengen relativ schwach-*-offen ist.
Basis der bw*-Topologie
Die hier beschriebene Basis der bw*-Topologie geht auf Jean Dieudonné zurück.[1] Ist ein normierter Raum, ein Element des Dualraums und eine Nullfolge in , so sei
- .
Diese Mengen bilden eine Umgebungsbasis offener Mengen von . Da diese Mengen offenbar konvex sind, ist die bw*-Topologie eine lokalkonvexe Hausdorff-Topologie.[2]
Ist eine Nullfolge, so ist durch
eine Halbnorm auf definiert und die bw*-Topologie ist genau die von diesen Halbnormen erzeugte lokalkonvexe Topologie.
Vollständigkeit
Ist ein normierter Raum, so ist der Dualraum mit der bw*-Topologie vollständig, das heißt jedes bw*-Cauchy-Netz konvergiert. Genauer bedeutet das: Ist ein Netz in , so dass es zu jeder Nullfolge aus einen Index gibt, so dass für alle , so gibt es ein mit bzgl. der bw*-Topologie.
Insbesondere ergibt sich, dass die bw*-Topologie für unendlichdimensionale Räume echt feiner ist als die schwach-*-Topologie ist, denn letztere ist bekanntlich nicht vollständig.[3]
bw*-stetige lineare Funktionale
Ist ein Banachraum, so fallen die schwach-*-stetigen und die bw*-stetigen linearen Funktionale auf zusammen. Daraus ergibt sich
- Ein lineares Funktional auf ist genau dann schwach-*-stetig, wenn die Einschränkung auf die Einheitskugel schwach-*-stetig ist.
Außerdem kann daraus sehr leicht der Satz von Krein-Šmulian über schwach-*-abgeschlossene, konvexe Mengen hergeleitet werden. Dies ist im unten angegebenen Lehrbuch[4] ausgeführt.
Kompakte Operatoren
Mittels der bw*-Topologie können kompakte Operatoren charakterisiert werden. Ist ein stetiger, linearer Operator zwischen Banachräumen, so ist der adjungierte Operator bekanntlich stetig, wenn auf beiden Räumen die Normtopologie, die schwach-*-Topologie oder die bw*-Topologie betrachtet wird. Interessante Aussagen sind also erst zu erwarten, wenn man auf den Räumen unterschiedliche Topologien betrachtet. Es gilt folgender Satz[5]:
- Ein stetiger linearer Operator zwischen Banachräumen ist genau dann kompakt, wenn der adjungierte Operator stetig ist bzgl. der bw*-Topologie auf und der Normtopologie auf .
bw-Topologie und cbw-Topologie
In Analogie zur bw*-Topologie auf einem Dualraum kann man die bw-Topologie auf dem Ausgangsraum als feinste Topologie, die auf allen beschränkten Mengen mit der relativen schwachen Topologie übereinstimmt, definieren.
Diese Topologie hat bei Weitem nicht die Bedeutung wie die bw*-Topologie, denn sie ist im Allgemeinen nicht lokalkonvex. 1974 hat R. F. Wheeler gezeigt, dass die bw-Topologie auf dem Folgenraum nicht lokalkonvex ist,[6] und 1984 konnte J. Gómez Gil sogar zeigen, dass die bw-Topologie genau dann lokalkonvex ist, wenn der Raum reflexiv ist.[7]
Für reflexive Räume bringt die bw-Topologie aber nichts Neues, denn dann ist selbst ein Dualraum, und die bw-Topologie stimmt mit der bw*-Topologie überein, wenn man mit identifiziert.
Um eine lokalkonvexe Topologie zu erhalten, definiert man auf die cbw-Topologie, die von allen konvexen, offenen Mengen der bw-Topologie erzeugt wird. Diese ist lokalkonvex und stimmt mit der relativen bw*-Topologie von überein, wenn man bzgl. der kanonischen Einbettung als Unterraum von auffasst.[8]
Einzelnachweise
- ↑ J. Dieudonné: Natural homomorphisms in Banach spaces, Proceedings American Mathematical Society (1950), Band 1, Seiten 54–59
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 2.7.2
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 2.7.6 mit Korollar 2.7.7
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 2.7.8 – 2.7.11
- ↑ Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 3.4.16
- ↑ R. F. Wheeler: The equicontinuous weak* topology and semi-reflexivity, Studia Mathematica (1972), Band 41, Seiten 243–256
- ↑ J. Gómez Gil: On local convexity of bounded weak topologies on Banach spaces, Pacific J. Math. (1984), Band 110, Nummer 1, Seiten 71–76
- ↑ J.G. Llavona: Approximation of Continuously Differentiable Functions, Elsevier Science Publishers (1986), ISBN 0-444-70128-1, Definition 4.2.2, Theorem 4.2.3