Fraktál je podle původní Mandelbrotovy definice množina, jejíž Hausdorffova dimenze je větší než dimenze topologická. Lze jej také definovat poněkud jednodušeji (méně obecně) jako geometrický objekt, který má následující vlastnosti:
Fraktály se jeví coby nejsložitější geometrické objekty, které současná matematika zkoumá, mají však často překvapivě jednoduchou matematickou strukturu.
Termín fraktál použil poprvé matematik Benoît Mandelbrot v roce 1975. Pochází z latinského fractus – rozbitý. Podobné objekty byly známy v matematice již dlouho předtím (např. Kochova křivka). B. Mandelbrot navázal na článek Deux types fondamentaux de distribution statistique (vyšlo česky v roce 1941 ve Statistickém obzoru, r. 22, str. 171-222, pod názvem Přírodní dualita statistického rozložení) českého geografa, demografa a statistika Jaromíra Korčáka z roku 1938.[1]
Dokonce 2000 násobné zvětšení Mandelbrotova fraktálu nesníží kvalitu nejjemnějších detailů jež stále mají charakteristický tvar celého obrazce. |
Jsou známy tyto druhy fraktálních útvarů:
Mnoho přírodních tvarů je možné modelovat fraktální geometrií, například hory, mraky, sněhové vločky,stromy, řeky a nebo cévní systém. Dobrým příkladem organického fraktálu je romanesko (druh květáku).
Často se tvary stromů a kapradiny v přírodě modelují na počítačích použitím rekurzivních algoritmů.
Fraktály mohou být jednoduše generovány na počítačích. Existuje spousta softwarů, které umožňují generování fraktálních útvarů.