File talk:Usage share of web browsers (Source StatCounter).svg

Today, File talk:Usage share of web browsers (Source StatCounter).svg is a topic that has gained unprecedented relevance in different areas of society. From politics to technology, science and culture, File talk:Usage share of web browsers (Source StatCounter).svg has become a common point of interest for people of all ages and cultures. The importance of understanding and analyzing File talk:Usage share of web browsers (Source StatCounter).svg lies in its significant impact on our daily lives, as well as the future of humanity. In this article, we will explore the various facets of File talk:Usage share of web browsers (Source StatCounter).svg, analyzing its implications, challenges and opportunities, with the aim of offering a comprehensive vision of this phenomenon that leaves no one indifferent.

Legend

Why is the legend in front of one of the stats lines? I think it would be better to move it but I don't know how. Good point for the next graph! --Rderijcke (talk) 10:21, 2 August 2011 (UTC)

Noticed that too, I can't tell how fast firefox rose where the legend is71.15.125.143 (talk) 03:58, 23 January 2012 (UTC)
Yes, you definitely should move the legend away from the lines! 83.78.125.12 (talk) 15:32, 5 February 2012 (UTC)
 Done Litehacker (talk) 19:32, 1 April 2012 (UTC)

Row sums

Inflation exceeds 12% as of September 2013.

df <- data.frame (explorer=browser.ie, firefox=browser.firefox, chrome=browser.chrome, safari=browser.safari, opera=browser.opera, mobile=browser.mobile)
require (plyr)
ddply (df, 1:5, sum)

   explorer firefox chrome safari opera     V1
1     27.72   19.76  41.38   7.96  1.00 112.44
2     29.30   20.87  38.07   8.50  1.17 112.35
3     29.71   20.06  39.15   8.00  1.01 111.83
4     29.82   21.34  37.09   8.60  1.22 112.42
5     30.71   21.42  36.52   8.29  1.19 112.26
6     30.78   21.89  36.42   7.92  1.26 112.82
7     31.23   22.37  35.72   7.83  1.39 111.62
8     32.04   23.73  33.81   7.12  1.72 109.51
9     32.08   22.32  34.77   7.81  1.63 110.91
10    32.12   25.55  32.43   7.09  1.77 109.07
11    32.31   24.56  32.76   7.00  1.77 108.80
12    32.70   22.40  34.21   7.70  1.61 110.65
13    32.85   22.85  33.59   7.39  1.63 110.09
14    34.07   24.87  31.23   7.13  1.72 108.60
15    34.81   24.98  30.87   6.72  1.78 108.15
16    35.75   24.88  29.84   6.77  2.02 107.79
17    37.45   24.78  28.40   6.62  1.95 107.69
18    38.65   25.27  27.27   6.08  1.98 107.29
19    40.18   26.39  25.00   5.93  1.81 105.86
20    40.63   25.23  25.69   5.92  1.82 106.24
21    41.66   26.79  23.61   5.60  1.72 106.12
22    41.89   27.49  23.16   5.19  1.67 106.52
23    42.45   27.95  22.14   5.16  1.66 106.38
24    43.58   28.34  20.65   5.07  1.74 105.91
25    43.87   29.29  19.36   5.01  1.84 105.12
26    44.52   29.67  18.29   5.04  1.91 104.64
27    45.11   29.98  17.37   5.02  1.97 104.15
28    45.44   30.37  16.54   5.08  2.00 103.88
29    46.00   30.68  15.68   5.09  2.00 103.75
30    46.94   30.76  14.85   4.79  2.07 103.51
31    48.16   31.17  13.35   4.70  2.01 103.41
32    49.21   31.24  12.39   4.56  2.00 103.21
33    49.87   31.50  11.54   4.42  2.03 102.86
34    51.34   31.09  10.76   4.23  1.88 102.51
35    52.68   30.69   9.88   4.09  1.91 102.11
36    52.77   31.64   8.61   4.14  1.96 101.44
37    52.86   31.15   9.24   4.07  1.91 101.80
38    53.26   31.74   8.06   4.23  1.82 101.29
39    54.44   31.27   7.29   4.16  1.97 101.09
40    54.50   31.83   6.71   4.08  1.97 100.81
41    55.25   31.64   6.04   3.76  2.00 100.25
42    55.72   31.97   5.45   3.48  2.06  99.96
43    56.57   32.21   4.66   3.67  2.02 100.34
44    57.96   31.82   4.17   3.47  1.88 100.45
45    58.37   31.34   3.69   3.28  2.62 100.42
46    58.69   31.28   3.38   3.25  2.67 100.39
47    59.49   30.26   2.80   2.91  3.46  99.86
48    60.11   30.50   3.01   3.02  2.64 100.33
49    61.88   29.67   2.07   2.75  2.96 100.19
50    62.09   28.75   2.42   2.65  3.23 100.00
51    62.52   29.40   1.73   2.73  2.94 100.12
52    64.43   27.85   1.52   2.59  2.95 100.03
53    65.41   27.03   1.38   2.57  2.92  99.98
54    67.16   25.77   1.03   3.00  2.86     NA
55    67.68   25.54   1.02   2.91  2.69     NA
56    67.84   25.23   1.21   2.41  2.83 100.12
57    68.14   25.27   0.93   2.49  3.01     NA
58    68.57   26.14     NA   3.30  1.78     NA
59    68.91   26.08     NA   2.99  1.83     NA

I was wondering about peak choice.

 H <- function (v) { p<-v/sum(v); -sum(p*log2(p)) }

ddply (df, 1:6, H)$V1
  2.183331 2.190255 2.216613 2.224303 2.218107 2.219387 2.215093 2.218628
  2.214239 2.210555 2.205386 2.201392 2.201056 2.190397 2.175899 2.177155
 2.165872 2.145324 2.108127 2.103482 2.086247 2.079735 2.071019 2.051073
 2.030112 2.011639 1.991809 1.979913 1.965589 1.942024 1.911546 1.883276
 1.856113 1.815062 1.777646 1.755233 1.739772 1.717507 1.688478 1.663445
 1.626796 1.589395 1.562894 1.522660 1.525238 1.513397 1.475864 1.491793
 1.431639 1.416333 1.391337 1.350074 1.328980 1.277658       NA       NA
       NA       NA       NA

As I suspected, we recently crested peak diversity as estimated by Shannon entropy.

Postscript The NA problem can be handled like this:

H <- function (v) { p<-v/sum(v, na.rm=TRUE); -sum(p*log2(p), na.rm=TRUE) }

MaxEnt 10:35, 15 September 2013 (UTC)

I have never heard of the browser "Mobile vs desktop"

What is this line? Based on previous versions calling it "mobile", it seems to be the sum of all mobile users. Why not split them by browser, as the name of the graph suggests? --mfb (talk) 12:58, 25 May 2017 (UTC)